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The rate coefficient of the reaction H + 02 = OH + O (1) was determined using OH laser absorption

spectroscopy behind reflected shock waves over the temperature range 1050-2500 K and the pressure range

0.7-4.0 atm. Eight mixtures and three stoichiometries were used. Two distinct and independent criteria

were employed in the evaluation ofkl. Our recommended expression for kl is kl = 7.13 x 1013 exp(--6957

K/T) cm 3 mol -_ s -I with a statistical uncertainty of 6%. A critical review of recent evaluations of kt yields

a consensus expression given by kl = 7.82 x 1013 exp(--7105 K/T) cm 3 tool -I s -1 over the temperature

range 960-5300 K. We do not support a non-Arrhenius rate coefficient expression, nor do we find evidence

of composition dependence upon the determination of kl.

Introduction

The reaction between hydrogen atom and oxygen molecule,

H-.bO2--OH+ O (Ar/-F298=70.2kJmol -l) (1)

is the main chain branching reaction in the oxidation of

hydrogen- and hydrocarbon-based fuels. About 80% of the

oxygen in a typical atmospheric pressure hydrocarbon flame is

consumed by this reaction) That this reaction is rate controlling
follows from its increase in both chain carriers and free valences

and from its high activation energy (itself following from the

high endothermicity). Thus, ignition delays and flame speeds,

important and easily measurable combustion characteristics, are

invariably found to be sensitive to the rate coefficient of this

reaction.

The central role of reaction 1 in combustion chemistry has

made it the object of intense scrutiny. In 1972, Bauich et al.2

(BDHL) reviewed the available data and recommended the rate

coefficient expression kl = 2.2 x 1014 exp(-8450 K/T) cm 3

tool -I s -I. They argued that the activation energy should not

be less than the endothermicity based upon the bimolecular

nature of the reaction and their expectation of a nonnegative

activation energy of the reverse reaction (which was subse-

quently found to be negative). 3'4 In 1973, Schott 5 measured

the exponential growth rate of CO2 chemiluminescence in shock-

heated H2/CO/O2/Ar mixtures and reported a rate coefficient

expression with a temperature-dependent preexponential factor,

kt = 1.22 x 1017T -0"907exp(--8369 K/T) cm 3 tool -I s -I. For

over a decade these two expressions formed the upper, BDHL,

and lower, Schott, accepted limits for kl, differing by a factor

of 1.7 at 2000 K. In 1984, Wamatz I reviewed the available

data and recommended Schott's expression. In 1985, Frank and

Just 6 measured O and H atom concentration profiles in shock-

heated H2/O2/N20/Ar mixtures and reported the rate coefficient

expression kl = 2.44 x 1014 exp(-8697 K/T) cm 3 tool -1 s-I,

which agreed well with the recommended value of BDHL; no

temperature dependence of the preexponential factor was found.

The position of experiment and review had been reversed with
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the experimental value now being a factor of 1.7 higher at 2000

K. This prompted a flurry of experimental and theoretical

investigations of the title reaction using more advanced diag-

nostics and techniques.

Even though numerous experimental studies have been

performed, disagreement still exists among the reported values

of k_. Schott 7 has suggested that this may be due not to

differences in experimental techniques and data reduction

methodologies but rather to differences in the reactant partial

pressures used in the various studies, i.e., a composition effect.

In this study we performed a series of experiments over a wide

range of composition and pressure to explore the effect, if any,

of reactant partial pressure upon the determination of k_.

Experimental Section

Shock Tube System. The experimental setup is shown in

Figure 1. Experiments were performed in a rolled square
stainless steel shock tube 63.5 mm in cross section. Shocks

were initiated by bursting an aluminum diaphragm with a cross-

shaped knife-edge plunger. The test section was routinely

pumped between experiments to 3 x 10 -6 Tort using a Varian

Turbo-V60 mrbopump, A combined leak and outgassing rate
of 5 x 10 -6 Torr rain -1 was measured. To further alleviate

contamination, neither the driven nor driver sections was rough

pumped below 500 retort. The gas handling system was
constructed using Varian high-vacuum valves and fittings. Test

gas pressures were measured using a Druck Model DPI-260

pressure transducer.
Two 25.4 mm diameter S 1-UVA quartz windows, centered

12.7 mm from the end plate, were flush mounted with the shock

tube inner walls. Shock passage was detected using four
113A21 PCB Piezotronics pressure transducers flush mounted

with the shock tube inner wall, one of which was mounted at

the axial position of the window center line. Shock velocities

between each transducer pair were measured and fitted to a

second-order polynomial in distance that was then used to obtain

the extrapolated shock velocity at the end plate. Shock

properties were computed using this velocity and standard

methods 8 assuming full vibrational relaxation and no chemical

reaction at the shock front. NASA thermochemical data 9 were

© 1995 American Chemical Society
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Figure 1. Schematic diagram of the experimental apparatus. The probe
laser beam path is offset for clarity of presentation.

used throughout the calculations. Computed shock properties
were corrected for effects due to the interaction between the

reflected shock front and the boundary layer following the

adiabatic equation of state method described by Michael and

Sutherland. 1° The postshock pressure, needed for the boundary
layer correction, was measured using the pressure transducer

centered above the windows. The initial test gas pressure was

added to this pressure.

The temporal profile of OH concentration was monitored

using the P1(5) line of the (0,0) band of the A 2y_+ _ X2H

transition at 310.032 nm (air). A Coherent CR-699-21 ring-

dye laser running Kiton Red 620 dye was pumped by a Coherent

Innova 200 argon ion laser. Dye solution temperature was

maintained at 278 K to give optimum laser performance.

Intracavity doubling via an angle-tuned LiIO3 crystal produced

a single-mode 5 mW UV beam with a 2 mm beam diameter.

Center wavelength of the OH absorption hne was determined

by passing part of the UV beam through a burner-stabilized

CH_air flame. The lasers, optical components, and the detection

system described below were mounted on a pneumatically

stabilizecl Newport MST series optical table.

Optical Detection System. A double-beam scheme was

employed for signal detection. The UV beam was split into

two beams. The first beam was directed through the shock tube
at the center of the windows. If the expected absorbance for

an experiment was small, the beam was reflected back through

the shock tube at the same sureamwise distance but vertically
displaced from the incoming beam and onto the detector, i.e.,

double pass. For experiments with larger expected absorbance,

the beam was returned to the detector after being steered around

the shock tube, i.e., single pass. An iris was set in front of the

detector both to limit the spurious signal due to hot gas emission

from within the shock tube and to help establish "time zero",

taken as the center of the schlieren signal caused by shock

passage. The second beam was split again, and one part was

directed to a reference detector and the other directed through
a CH4/air flame and onto a third detector. All three detectors

were THORN EMI Model 9224QB photomnitipher tubes (PMT)

using a five-dynode configuration to ensure optimum linearity.

High-speed buffer/amphfiers were used to isolate the anodes.

An overall electronic time constant of 0.2/_s was determined

for the PMT/electronics/cablc system. Background light reduc-

tion was achieved by mounting a narrow-band interference filter

in front of each PMT. The reference, probe, difference (probe

dc - reference ac), and the last pressure transducer signals were

recorded on a four-channel Nicolet 4094C digital oscilloscope
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Figure 2. Typical experimental records. (a, top) 2.0% H2, 0.5% 02,
97.5% Ar, /'5 = 1556 K, and P5 = 0.75 atm; (b, bottom) 2.0% H2,
0.2% 02, 97.8% Ar, T5 = 2163 K, and P5 = 1.99 atm. Spikes at time

zero are schlieren signals due to reflected shock front passage. Smooth
lines are computed OH absorption profiles using the Table 2 mechanism
and the OH absorption coefficients determined from A_.

with Nicolet 4570 plug-in units. The pressure signal served as

the trigger source for the oscilloscope. Reaction progress was

followed using the difference signal. Further details of the

experimental apparatus are given in ref 11.

Test Gas Mixtures. The test gas mixtures were prepared

manometrically and allowed to stand for 48 h before use. The

maximum uncertainty of the reactant concentration was 0.5%

or less for each component. Gases were used as dehvered with

no further purification. Stated purifies of the gases were as

follows: H2, 99.9995% (Linde Research Grade, THC as CI-h

<0.3 ppm); 02, 99.6% (Linde Zero Grade, THC as CI-L, <0.3

ppm); At, 99.996% (Linde Zero Grade, THC as CI-I4 <0.3 ppm).

These purity levels were confirmed by gas chromatographic

analysis with flame ionization detection.

Results

Typical transmission profiles at different experimental condi-

tions are shown in Figure 2. After an induction period light

absorption increasesrapidlydue to the essentiallyexponential

growth of OH concentrationcaused by chain branching and

propagationreactions.All experimentsshow rapidachievement

of an OH superequilibriumconcentrationfollowed by a slow

relaxationto equilibriumat long times.

Data reduction was accomplished using a small set of relevant

information derived from the absorption traces, namely, A,,_

= (1 - lllo),,ax, NS,,_ = -d((lllo)ldt)marlA,nax, and one

characteristic time, t5o, the time at which the absorbed light

intensity has reached 50% of A,,m. These three observables

were chosen based upon sensitivity analysis using a trial H2/O2

reaction mechanism. It has been shown previously 12.13 that a

small number of appropriately chosen observables can embody
the full information content of an experiment.

Experimental conditions, measured observables, and deter-

mined kt values are given in Table 1. Eight rich mixtures of

equivalence ratios of 2, 5, and 10 were used. Mixture

compositions were selected such that maximum absorption was

less than 0.55 for all conditions. Reflected shock temperatures

and pressures ranged from 1050 to 2500 K and from 0.7 to 4.0

atm, respectively. Temperatures obtained using the boundary

layer correction were always higher than the ideal shock

temperatures, on average by 1.4%. A clear dependence of the
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TABLE 1: _Tperimental Conditions and Results a

Ryu et aI.

T5 Ps A,_ NS,_ tso k,_/1012 T5 P5 A,._ NSm,_ tso ktb/10 z2

4.0% H2, 1.0% 02, 95.0% Ar (¢ = 2)

1052 2.289 0.334 15 706 618 0.092 1102 0.960 0.344 7 252 836 0.124

1074 0.964 0.303 7 293 1005 0.104 1115 2.248 0.492 18 471 393 0.130

1086 0.940 0.294 6 642 985 0.112

2.0% H2, 0.5% 02, 97.5% Ar (¢ = 2)

1155 0.957 0.215 4 646 1274 0.172 1570 0.737 0.267 12 205 316 0.933

1164 0.892 0.220 4 600 1283 0.179 1577 0.962 0.554 14 144 261 0.853

1170 0.950 0.232 4 887 1183 0.186 1578 0.788 0.463 11 241 308 0.829

1174 0.945 0.237 4 632 1153 0.181 1581 0.761 0.352 11 931 279 0.870

1228 0.734 0.227 4 656 1153 0.242 1596 0.852 0.503 12 898 269 0.894

1234 0.945 0.294 6 142 819 0.257 1627 0.738 0.315 13 234 250 1.05

1246 0.877 0.307 5 908 803 0.271 1649 0.733 0.488 12 854 272 1.07

1248 0.756 0.257 5 392 943 0.281 1652 0.769 0.328 13 076 242 1.06

1264 0.773 0.271 5 763 911 0.293 1667 0.744 0.499 13 801 253 1.15

1274 0.781 0.302 5 874 814 0.312 1708 0.771 0.517 14 116 228 1.20

1285 0.794 0.294 6 323 794 0.325 1715 0.797 0.361 15 958 220 1.32

1313 0.936 0.326 7 150 616 0.338 1726 0.784 0.364 14 513 214 1.24
1323 0.800 0.310 7 354 696 0.386 1747 0.795 0.344 16 398 204 1.41

1352 0.766 0.351 7 866 620 0.433 1760 1.034 0.480 20 408 150 1.39

1357 0.771 0.356 7 162 612 0.420 1809 0.846 0.409 18 716 161 1.55

1358 0.772 0.353 7 886 633 0.439 1915 0.876 0.407 23 206 129 2.08

1359 0.774 0.354 7 183 611 0.419 1924 0.735 0.393 17 442 146 1.88

1387 0.778 0.368 7 777 537 0.474 1998 1.018 0.484 25 570 99 2.03

1472 0.859 0.437 10 011 384 0.601 2017 0.757 0.429 21 440 128 2.40

1516 0.699 0.226 9 331 453 0.707 2030 0.854 0.430 23 325 113 2.27

1556 0.751 0.460 10965 329 0.820 2099 0.772 0.450 22 173 108 2.48

1558 0.733 0.445 10 885 343 0.837 2136 0.851 0.487 24 733 92 2.78

0.4% H2, 0.1% 02, 99.5% Ar (¢_ =2)

1525 2.005 0.210 5 742 703 0.734 2068 1.819 0.390 9 848 236 2.32

1639 2.049 0.270 6 744 550 1.00 2082 1.857 0.375 10 229 224 2.35

1692 2.029 0.284 7 447 432 1.17 2132 2.094 0.439 13 291 185 2.83

1934 1.922 0.341 10 058 293 2.07 2256 2.050 0.439 13 567 163 3.10

2044 2.146 0.438 12 744 199 2.52 2409 2.095 0.453 15 403 127 3.67

0.2% H2, 0.05% 02, 99.75% Ar (¢ = 2)

1527 3.770 0.156 5 948 647 0.753 1888 3.880 0.242 9 066 270 1.77

1593 3.704 0.143 6720 534 0.912 1977 4.050 0.271 10560 203 2.09
1658 3.654 0.168 6 928 476 1.09 1999 3.697 0.224 9 383 237 2.08

1716 3.792 0.217 7 281 397 1.24 2001 4.088 0.276 ! l 847 203 2.35

1725 3.905 0.233 7 652 360 1.27 2092 3.681 0.257 11 431 193 2.66

1763 3.843 0.195 8 179 356 1.41 2211 3.715 0.270 12714 158 3.14

5.0% H2, 0.5% 02, 94.5% Ar (¢ = 5)

1243 0.798 0.084 6 857 863 0.259 1637 0.760 0.171 18 093 216 1.03

1246 0.795 0.086 7 325 822 0.272 1675 0.749 0.160 18 556 200 1.13

1251 0.792 0.091 7 274 784 0.276 1684 0.758 0.199 19 331 191 1.17
1252 0.800 0.084 7 083 807 0.267 1706 0.739 0.160 18 381 190 1.18

1254 0.813 0.089 7 595 799 0.282 1743 0.749 0.231 19 012 168 1.26

1301 0.754 0.101 8 099 643 0.337 1754 0.702 0.230 17 430 177 1.26

1315 0.766 0.112 8 580 581 0.359 1805 0.756 0.264 20 371 140 1.43

1330 0.784 0.108 9 342 578 0.387 1897 0.761 0.293 23 894 121 1.80

1333 0.793 0.108 9 490 578 0.391 1939 0.728 0.260 24 669 118 2.02

1336 0.797 0.110 9 645 574 0.368 2014 0.721 0.265 23 294 105 2.11

1336 0.794 0.107 9 009 559 0.392 2015 0.746 0.290 25 968 102 2.25
1337 0.796 0.114 9 631 561 0.395 2038 0.849 0.311 29 993 86 2.34

1516 0.768 0.168 14 101 274 0.722 2041 0.732 0.298 23 761 98 2.18

1538 0.794 0.152 14 815 280 0.755 2125 0.721 0.324 27 141 88 2.69

1543 0.744 0.164 13 298 269 0.725 2151 0.724 0.337 26 430 84 2.69

1546 0.799 0.152 15 348 269 0.777 2188 0.775 0.343 28 553 74 2.78

1549 0.794 0.178 16 252 257 0.822 2376 0.756 0.383 33 464 58 3.69

1565 0.810 0.198 16 257 235 0.833 2414 0.725 0.366 32 218 57 3.84

1620 0.759 0.196 15 790 220 0.910

2.0% H2, 0.2% 02, 97.8% Ar (¢ = 5)

1509 1.629 0.098 12 846 338 0.736 2029 1.613 0.219 23 397 106 2.36

1522 1.754 0.107 13 364 313 0.760 2049 1.578 0.197 24 015 103 2.50

1531 1.673 0.108 14009 321 0.802 2094 1.816 0.271 28007 81 2.65

1578 1.682 0.126 13 023 264 0.808 2134 1.783 0.294 28 023 78 2.80

1667 1.725 0.154 16084 209 1.06 2163 1.994 0.323 32 160 64 2.95

1746 1.744 0.170 20747 165 1.44 2165 1.981 0.294 31 462 67 2.91

1819 1.757 0.195 22 707 144 1.69 2184 1.780 0.289 29 065 71 3.02

1850 1.759 0.184 20 516 136 1.60 2282 1.849 0.265 31 781 59 3.41
1884 1.893 0.223 24 345 116 1.81 2293 1.852 0.303 31 250 58 3.38

1948 1.834 0.215 24 065 106 1.98 2345 1.915 0.358 34 435 52 3.70

1989 1.579 0.201 21 756 113 2.16 2379 2.024 0.372 36669 47 3.81

1997 1.838 0.229 24397 97 2.11 2501 2.013 0.356 40415 40 4.46

2026 1.786 0.244 25 774 95 2.34
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TABLE 1 (Continued)
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T_ P5 A,,_ NS,_ tso kjb/1012 2"5 P5 A,,,_ NS,,a, t_o kt_llO 12

1.0% H2, 0.1% 02, 98.9% Ar (¢, = 5)
1521 3.263 0.090 11 966 328 0.724 1895 3.285 0.179 19508 130 1.72
1533 3.303 0.075 13 013 323 0.760 1913 3.378 0.183 20 306 118 1.76
1557 3.382 0.088 14 556 280 0.850 1945 3.117 0.195 19 707 126 1.91
1579 3.054 0.104 13 067 286 0.888 1976 3.280 0.189 20 783 111 1.97
1583 3.510 0.106 13 726 246 0.818 2057 3.329 0.195 25 794 93 2.55
1609 3.387 0.091 13 219 241 0.833 2104 3.439 0.253 26 296 82 2.65
1611 3.720 0.109 15 339 224 0.881 2107 3.403 0.251 24 083 84 2.49

1647 3.342 0.100 15 969 231 1.05 2142 3.444 0.208 26 735 77 2.78
1664 3.868 0.123 18 219 185 1.07 2155 3.383 0.223 25 695 77 2.75

1700 3.203 0.117 17 128 201 1.25 2213 3.370 0.224 28 098 67 3.13
1714 3.237 0.120 16308 197 1.19 2305 3.442 0.255 31 545 59 3.65
1792 3.275 0.144 20541 165 1.59 2355 3.478 0.229 31 423 53 3.73
1809 3.331 0.148 19 533 153 1.53 2379 3.313 0.249 31 052 56 3.91
1841 3.811 0.157 20 503 122 1.46 2413 3.384 0.262 32 645 49 4.10
1846 3.364 0.150 20 213 138 1.61

10.0% H2, 0.5% 02, 89.5% Ar (_b= I0)
1514 0.722 0.075 15 079 288 0.746 1801 0.784 0.132 25 310 127 1.52
1569 0.804 0.096 17 854 229 0.845 1869 0.851 0.169 27 958 104 1.67
1575 0.809 0.093 19 172 217 0.904 1883 0.850 0.148 30 587 102 1.82
1579 0.718 0.091 16 901 226 0.900 2042 0.836 0.143 34 097 74 2.41
1616 0.796 0.086 20406 193 1.01 2081 0.861 0.157 36968 68 2.63
1698 0.812 0.115 24 913 155 1.30 2407 0.897 0.206 47 300 39 4.16
1715 0.827 0.117 25 299 152 1.32 2481 0.902 0.211 47 061 36 4.31
1782 0.978 0.136 29 323 104 1.39 2494 0.856 0.215 45 520 37 4.42

Units are K for Ts, atm for Ps, s-_ for normalized maximum slope,/_s for t5o,

correction upon the ideal shock temperature or the initial

pressure was not observed. Post shock reactant densities ranged
from 4 x I0 -8 to 7 x 10 -7 mol cm -3 for H2 and 1 x 10 -s to

3 x 10 -7 mol cm -3 for 02. The upper bound for the 1.

experimental temperature range was set by the appearance of 2.3.
absorption in a series of shocks in a 2% 02/98% Ar mixture, 4.

presumably from hydrocarbon contamination. At temperatures 5.

above 2700 K a small but noticeable absorption was observed

at long times. We speculate that H atom producing contami- 6.

nants swept off the shock tube walls or in the test gas may be

responsible. The lower temperature bound of 1050 K was set

by the loss of absorption signal due to the:diminishing mount 7.

of OH generated at lower temperatures. 8.

Computer simulations were performed using the detailed

reaction mechanism of Yuan et al.,t4 with the following modi- 9.
fications: the rate coefficient for OH + H2 = H20 + H(3) was

taken from the review of Oldenborg et al.,15 the rate coefficient

for O + H20 = OH + OH (4) was taken from the review of

Michael, t6 and the reaction H + O + M = OH + M (7) was

added with the rate coefficient and third body efficiencies from
Masten et al/7 The reaction mechanism and rate coefficient

expressions are given in Table 2. Reverse reaction rate coeffi-

cients were calculated from the principle of detailed balancing.
NASA thermochemical data 9 were used in all calculations. The

LSODE integrator 18was used to solve the set of stiff differential

equations describing chemical reaction under the assumed

constant-density conditions for reflected shocks. 8

Local logarithmic response sensitivities t9 computed for the

Figure 2 experimental conditions are shown in Figure 3.

Overall, NS,,_x and tso are sensitive only to reaction 1.

Therefore, kl could be determined by matching NS,_ or t50;

however, the effect of possible contaminants must be considered.

This effect can be readily simulated by assuming that H atoms

are present in the initial mixture. At high temperatures H atoms

are generated by fast initiation reactions of the H2/O2 system

so that the addition of contaminants is found to have little effect;

e.g., addition of 50 ppb H atoms to a 2% H2/0.2% 02/97.8%

Ar mixture at 2163 K changed tso from 65.4 to 65.1 /zs. At

low temperatures H atom contamination has a profound effect

upon ts0; e.g., addition of 5 ppb H atoms to a 2% H2/0.5% 02/

and cm 3 mol -I s -1 for k_. b kl(NS,_,_).

TABLE 2: Reaction Mechanism*

reaction A_ n 0 ref

H+ 02 = OH + O 7.13 (+13)
O+ H2 = OH + H 1.87 (+14)
OH + H2 = H20 + H 2.14 (+08)
O + H20 = OH + OH 4.51 (+04)
O + O + M = O__+ 1.00(+17)
M (Ar = 1.0, H2 = 2.9,
02 = 1.2, H20 = 18.5)
H + H + M = H2 + 6.40 (+17)
M (Ar = 1.0, H2 = 4.0,
H20 = 12.0, H = 26.0)
H+O+M=OH + 6.17(+16)
M (At = 1.0, H20 = 5.0)
H + OH + M = H20 + 8.40 (+21)
M (Ar = 1.0, H., = 2.5.
H20 = 16.25)
H + Oz + M = HO2+ 7.00 (+17)
M (Ar = 1.0, H2 = 3.33,
02 = 1.33, H20 = 21.3)

10. HO2 + H = OH + OH 2.20(+14)
1I. HO2 + H = H2 + O_ 2.50 (+13)
12. HO2 + H = H20 + O 5.00 (+12)
13. HO2 + O = 02 + OH 2.00 (+13)
14. HO2 + OH = H20 + 02 2.00 (+13)
15. HO2 + HO2 = H202 + O2 1.06(+11)
16. H202 + M = OH + OH + 1.20 (+17)

M (Ar = 0.67, O_ = 0.78.
H20 = 6.0)

17. H20., + H = HO2 + H2 1.70(+12)
18. H20_.+ H = H20 + OH 1.00 (+13)
19. H20,. + O = HO2 + OH 2.80(+13)

0.0 6957 thisstudy
0.0 6854 38
1.52 1736 15
2.70 7323 16

-1.0 0 12

-1.0 0 12

-0.6 0 17

-2.0 0 12

-0.8 0 12

0.0 710 39
0.0 350 1
0.0 710 39
0.0 0 1
0.0 0 1
0.0 -855 40
0.0 22900 12

0.0 1900 I
0.0 1805 1
0.0 3225 40
0.0 720 120. H20._ + OH = H20 + HO2 7.00 (+ 12)

Rate coefficients are in the form k = A/_ exp(-0/T). Units are
K, cm 3, mol, and s. b Numbers in parentheses are powers of 10.

97.5% Ar mixture at 1234 K changed ts0 from 824 to 693/zs.

This reduction in tso is equivalent to a 23% increase in kj. NS,,_

is unaffected by H atom addition for either case.

Based upon the sensitivity and contaminant effect studies, k_

and _(OH) were the parameters chosen for simultaneous

optimization using NS_,_ and A,_ as the target criteria. It

should be noted that tso, an integral measure of reaction progress,

is affected by the details of initiation, whereas NS,_, a

differential measure of growth, is determined at a point in

reaction progress where memory of the initiation process is lost.
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Figure 4. Arrhenius plot of the experimental data for kl(NS,_). The
solid line is the least-squares fit to the data; kI(NS,._) = 7.13 x l013
exp(-6957 K/T) cm 3 mol -I s-I (1050 K < T <_ 2500 K). Symbols
are A for @= 2 mixtures, [] for @= 5 mixtures, O for _ = 10 mixtures,
and • for tp = 15 mixtures (15.0% H2, 0.5% 02, 84.5% Ar). The data
for ¢ = 15 mixtures were not included in the least-squares fit for kl-
(NS,,_.3.

The data obtained above 2500K were not included in the

analysis due to possible contamination effects (see above).

However, as can be seen in Figure 4, these points lie on the

extrapolated line. A least-squares fit to the data is given by

kl(NS,_) = (7.13 + 0.31) x 1013 exp(-6957 -4-

30K/T) cmamol -I S -1

with a 4% standard deviation, over the temperature range 1050-

2500 K.

As was shown previously, k) and e(OH) can be determined

using tso and A,_ as the optimization criteria if possible

contamination effects are ignored. Results of this analysis are

shown in Figure 5 where the solid line represents the least-

squares fit to the data given by:

kt(ts0) = (7.19 + 0.41) x 1013 exp(-7015 4-

40 K/T) cm 3 mol-t s-t
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'-_ 12.3

_ 11.6

10.9
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Figure 5. Arrhenius plot of the experimental data of k_(tso). The solid
line is the least-squares fit to the data; kl(tso) = 7.19 x l023 exp(-
7015 K/T) cm 3 tool -t s-_. Symbols as in Figure 4.

with a 6% standard deviation, over the same temperature range.

The choice of optimization criteria results in two slightly

different Arrhenius expressions that diverge with decreasing

temperature for a maximum difference of 5% at the low-

temperature extreme. If there were contamination effects, we

would have expected that the expressions should have been quite

different due to the dramatic effect of impurities upon tso. The

agreement of these two expressions implies that our experi-

mental results were not significantly influenced by the presence

of impurities.

A standard propagation-of-error analysis 2° was performed for

individual experimental determinations of k_. Contributions to

uncertainty were estimated using the measurement accuracy of

the various lxansducers and oscilloscopes. Maximum uncertain-

ties in the determination of kt(NS,,_) and kl(tso) were 6.0%

and 7.5%, respectively. These values were then used as error
limits instead of the smaller values derived from the scatter of

the data about the fitted Arrhenlus expressions. For typical

conditions the percentage contribution to the uncertainty for

individual kt(NS,_) values are 54% from NS_, 24% from P5

in the temperature correction, 10% from incident shock velocity,
and 10% and 2% from AXo,. and AXH2 of the initial mixture

composition, respectively. A similar distribution of the uncer-

tainty contributions was also obtained for kl(tso).

Shown in Figure 2 are computed profiles (smooth lines)

obtained using the reaction mechanism in Table 2. As can be

seen, the computed profiles reproduce the experiments quite

well. Inspection of Figures 4 and 5 reveals that the kt values

exhibit no dependence upon either composition or pressure over

the ranges investigated in this study.

Discussion

The present determination of k_ is compared to recent

experimental and modeling studies in Table 3 and Figure 6.

There is good agreement with the expressions of Shin and

Michael 21 and Yang et al. 22

The study of Pirraglia et al.23 (PMSK), flash photo_ysis

followed by pseudo-first-order decay of H atoms, has taken on

an great importance because it contains the only data for k_
below 1050 K. As a result, it has been used in most of the

more recent studies either for comparison 14'17"2t or combined

with other data to make ArrherLius 24 or non-Arrhenius t7 expres-

sions. While the expressions determined by PMSK and in this

study agree within 20% over the mutual temperature range, their
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TABLE 3: Comparison of Rate CeelFufent Expressions"
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authors b T range A n 0 ref notes

PMSK 962-1750 (1.68 + 0.19) x, 10 TM 0.00 8119 4- 139 23 C
MHB 1450-3370 (9.33 + 0.40) x 1013 0.00 7448 4- 86 17 d
YWYFR 1050-2700 1.59 x 10 ]7 -0.927 8493 14 e

SM 1103-2055 (6.93 4- 0.96) x 1013 0.00 6917 + 193 21 d

DH 960-5300 (9.76 4- 0.72) x 1013 0.00 7474 4- 122 24 f
YFMHB t336-3370 8.30 x 1013 0.00 7253 27 g
YGSF 1100-3550 (7.60 4- 0.70) x 10 t3 0.00 7065 4- 140 22 h

RHR 1050-2500 (7.13 + 0.31) x 1013 0.00 6957 4- 30 this study i

" Rate coefficients are in the form k = AT' exp(-O/T). Units are K, cm 3, mol, and s. b Abbreviations explained in text. c 16% mean deviation.
# 1e deviation. • a_, = 0.05. f Uncertainties in 95% confidence level; combined results with SM, MHB, PMSK data. g 9% !a deviation; optimization
using YWYFR and MHB data. h la deviation; combined results with SM data. _6% deviation, k_fNS,,_).
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Figure 6. Comparison of the present results for kl to the previous
experimental studies.

temperature dependences are very different. At 1050 K our

expression is 22% higher, and at 1700 K our expression is 19%

lower. A recent review 16 notes that there may have been bias

in the data set at low mmperatmes (T < 1200 K) due to a

systematic overestimation of HOz production. This may account

for the high-temperature dependence observed by PMSK.

Masten et alj7 (M]-IB) performed a dual beam laser absorp-

tion study of OH radical similar to ours. They obtained an

expression that is 7.5% higher at 2500 K and 7.0% lower at

1450 K than the present study; however, our expression is

contained within the MHB error limits (4-10%). For the incident

shock condition shown in Figure 3 of MHB our value of kl is

2% lower than their value, and as might be expected, our

predicted profile is in excellent agreement with the MHB

experimental profile. For the reflected shock condition shown

in their Figure 5 our value of km is 10% lower. Nonetheless,

our predicted profile is again in good agreement with their

experimental profile. Substitution of our k_ expression into the

MHB mechanism required a factor of 2.5 increase in the value

of the initiation reaction, kll (H02 + H = H2 + 02), to match

the profile. This is an increase of only 40% above the value of

k_t used in the present study. In their analysis MHB treated

kll as a profile shifting parameter, the shape of the profile being

controlled by k].

Yuan et al)4 (YWYFR) performed a single-beam laser

absorption study of OH radical. Five active parameters, kl, k2,

k3, kl], and Af/'F298(I-IO2), were simultaneously optimized using

the solution mapping method. 25 Compared to the present results

in the common temperature range, 1150-2500 K, the k_ values

of YWYFR are on average 14% lower, but the error limits arc

overlapped. These authors also reported that when using MHB's

secondary reaction rate coefficients, k2, k3, and kll, a slightly

different expression resulted, 1.71 × 1017T -0.932 exp(-8498

K/T), which differs from their previous expression by 3% and

shows the effect of the choice of secondary reaction rate

coefficients upon the determination of k_.

Shin and Michael 21 (SM) performed a laser photolysis study

of H atom depletion under pseudo-first-order conditions. As
shown in Figure 6, the kl values of SM and those of the present

study are in agreement over the temperature range 1100-2055

K. Their k= values, derived from the measured slope of ln-

(absorbance),, are independent of impurity effects. SM corrected

for boundary layer effects as was done m the present study) °26

Du and HesslerTM (DH) performed a flash absorption study

of OH radical profiles in shock-heated H_]Oz/Kr test gas. They
combined their results with the data of MHB, PMSK, and SM

and obtained an expression that is 16% lower at 1050 K and

11% higher at 2500 K than the present results. In their

evaluation DH introduced a profile shift parameter, xc, that was

needed to shift their calculated profiles to longer distances in

order to match the experimental profiles. They associated xc

with the incubation time of H2 dissociation, the main initiation

channel at high temperature. However, we are able to model

their Figure 3 experimental profile using the Table 2 mechanism

without any profile shifting. This comparison is shown in Figure

7, where the sofid line is our predicted absorptionprofile and

the dotted lines are the upper and lower noise band of the DH

profile. For this condition DH used a 0.783 mm shift of their
calculated profile. Our prediction is well within the noise band,

although approaching the high end at long distances, where the

profile is controlled by H2 decomposition. Indeed, at all times,

the profile is more sensitive to the rate coefficient of H + H +

M = H2 + M (6) than to all other reactions, including reaction

1. This can be seen in Figure 7 where the upper filled boxes

and the lower open boxes represent the extent of profile shift

for 4-20% variations in kl and kt, respectively.

Recently, the data of YWYFR and MHB were subjected to

a simultaneous optimization using two different model responses

by Yu et al.27 (YFMHB): the characteristic times, ti, and the

time difference, At, defined as At = t75 - t25. The MHB data

yielded nearly identical kt expressions for both model responses

while those of YWYFR were noticeably different, with k,(t3

having a nonzero temperaturedependence of the preexponential

factor and being 15% lower than kt(At) at 2150 K. There was

reasonable agreement between the YWYF kt(At) and both the

M_HB kt expressions (which were nearly identical). An

explanation for the difference between the YWYFR kl (ti) and

kl(AO was proposed on the basis of the effect of vibrational
nonequilibriumof02. The high-temperatureYWYER datawere

taken atshortreactiontimes where thiseffectwould be most

pronounced. This isakin to the explanationgiven by DH for
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Figure 7. Comparison of our computed profileto theexperimental

profileofDu and Hesslcr'sFigure3 condition?4 The solidlineisthe
absorptionprofilecomputedusingtheTable2reactionmechanismwith
x_= 0. The dottedlinesareupperand lowernoisebandderivedfrom

thcDH profile.The earlypartofthecxperimentalsignalisdominated
by shockpassagetransicnts.Filledand opcnboxesrcprescmtheextent
of profilechangesfor4-20% variationofkl(H + O2 ----OH + O) and

(H + H + M = H2 + M), respectively.

the profile shift parameter included in their study. YFMHB

suggest an Arrhenius expression based upon the At response

surface that is within our error bounds, being 3% higher at 2500

K and 7% lower at 1336 K than the present study.

The possible effect of O2 vibrational relaxation on hydrogen

combustion has important implications for the prediction of air-

breathing hypersonic propulsion system performance. Such

systems would be hydrogen fueled and have characteristic

chemical reaction times much shorter than 100/as. In order to

quantify the effect of O2 vibrational relaxation, a series of

experiments were run using the YWYFR Series E composition

in the pressure and temperature range where the effect should

be most apparent, i.e., 2.4-3.0 atm and 1905-2380 K. Unlike

the case of the YWYFR data, we did not see a difference

between the k_ value determined using either is0 or At as the

modeling criterion. The experimental values of tso and At are

shorter than predicted using the Table 2 mechanism, on average

by 2% (0.6/as) and 5% (0.3/as), respectively. While arbitrary

time accuracy may be achieved in simulations, differences of

this scale, although they are discernible, are not particularly

meaningful. Nonetheless, the Table 2 mechanism does account

for the ts0, At, and NS,_ values for each experiment. At these

conditions there is exquisite sensitivity to t5o as modeling

criterion--a 0.1/as change requires a 1% change in k), while

sensitivity to At was smaller. The optimized kl values for these

experiments differ on average by 4% (within our uncertainty

limits) from our recommended expression. Individual experi-

ments required adjustments between -3% and +8%. We are

not required to invoke 02 vibrational relaxation to explain our

short reaction time data as both tso and At are predicted equally

well using our mechanism without additional constraints. Belles

and Lauver 2s have previously shown that 02 vibrational

relaxation is not required to explain the induction delay

lengthening at short times in H2/O2 mixtures as had been

proposed by Schott and Kinsey. 29

Yang et al. 22 (YGSF) performed a single-beam laser absorp-

tion study of OH radical. It was a reinvestigation that supplanted

previous work on the title reaction. 3°-31 An iterative optimization

using eight time-difference responses (e.g., tso - t40) yielded a

rate coefficient expression that is 5% lower at 1850 K and 5%

Ryu et al.

14.0

k_ (cammasus) = 7.82x I0 taexlm(-7105 F,PI')
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Figure 8. Consensus expression for k,. Solid line is the consensus
expression; kl(NS,,,,_) = 7.82 x 1013 exp(-7105 K/T) cm 3 tool -I s-1
(960 K < T _<5300 K). Symbols: v, PMSK; crossed r-I, DH; r-l SM;
4, YFMHB; <>, YGSF; O, RHR. Uncertainty limits for the individual

expressions are shown for the highest and lowest temperature points.

higher at 2500 K than our expression. YGSF then combined
their data with that of SM and obtained a new expression that

is also within our error bounds, being 4% lower at 1100 K and

2% higher at 2500 K.

Both experimental and theoretical proposals have been made
for the temperature dependence of the preexponential factor of

kt. Nonzero experimental values are reported by Schott

(-0.907), YWYFR (-0.927), and MHB (-0.7, obtained from
the combination of MHB and PMSK data). Miller's theoretical

calculation gave -0.81632"33 obtained using quasiclassical

trajectory and quantum mechanical threshold methods on the

potential energy surface of Melius and Blint. 34 He attributed

the negative tempe.rature dependence to the nonstatistical
"recrossing" effects especially at high temperatures. PMSK,

MHB (MHB data only), SM, DH, YFMHB, YGSF, and the

present study do not find a temperature dependence for the

preexponential factor. Recently, Varandas et al.3s (VBP)
calculated the thermal rate coefficient using various versions

of quasiclassical trajectory method at 1000, 1750, 2000, 2500,
and 3000 K. In the calculation, the fourth version of their

double many-body expansion potential energy surface 36 for the

ground state of HO2 was utilized, which reproduces the most
accurate estimates of the experimental dissociation energy,

equilibrium geometry, and quadratic force constants. Their

calculations showed no temperature dependence for the preex-

ponential factor.
There exists reasonable agreement between the results of this

study and most of the recent evaluations of k_2/-24.27.37 and so

it is possible to achieve a consensus expression, shown in Figure

8, given by

k) = 7.82 x 1013 exp(-7105 K/T) cm 3 rnol -l s -1

over the temperature range 960-5300 K, with an uncertainty
of 6%. We developed this expression in the following fashion.

The expressions of PMSK, SM, DH, YFMHB, YGSF, and the

present study were converted to a series of "data points" evenly

spaced in l/Tover their temperature ranges. A weighted least-

squares fit was then obtained with the weighting factor taken
as the inverse of the uncertainty limits for the Arrhenius

expressions reported in the individual studies. The data of
PMSK and SM were used to develop the DH expression, and

the data of SM were used to develop the YGSF expression.
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Accordingly, their weighting factors were reduced, PMSK by

half and SM by two-thirds, to correct for their overrepresenta-

tion. An Arrhenius expression was assumed as there is neither

an experimental nor, currently, a theoretical basis for curvature.

Conclusions

The rate coefficient of the reaction H + 02 = OH + O (1)

was determined using OH laser absorption spectroscopy behind

reflected shock waves over the temperature range 1050-2500

K and the pressure range 0.7-4.0 atrn. Eight different mixtures

and three different stoichiometries were used. Two distinct and

independent criteria were employed in the evaluation of kl,

namely, normalized maximum slope and the characteristic lime,

ts0. Our recommended expression for k_, obtained using

normalized maximum slope, is

k I = 7.13 x 1013 exp(-6957 K/T) cm 3 mol -I s -1

with an uncertainty of 6%. This expression agrees with that of

SM and with the computational results of VBP. We neither

support a curved rate coefficient expression nor find evidence

of composition dependence upon the determination of kl.

Without confirmation of the PMSK results below 1050 K, there

is neither an experimental nor, currently, a theoretical basis for

curvature. Critical review of recent k_ determinations yields

the consensus expression

k I = 7.82 × 1013 exp(-7105 K/T) cm 3 mo1-1 s -I

over the temperature range 960-5300 K.
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